Klein, WB., Stern, C.R., Luger, G.F., and Pless, D. "Teleo-Reactive Control for Accelerator Beamline Tuning". In
Proceedings of the IASTED International Conference. Zurich: IASTED/ACTA Press (2000).

TELEO-REACTIVE CONTROL FOR ACCELERATOR BEAMLINE TUNING

WILLIAM B. KLEIN
Intelligent Programming, LLC., U.S.A.
2403 San Mateo Blvd. NE, Suite W.2
Albuquerque, NM 87110, U.S.A.

CARL R. STERN
SandiaView Software, Inc.
1009 Bradbury Dr. SE, Suite 7
Albuquerque, NM 87106, U.S.A.

ABSTRACT

Over the past five years we have designed, built, and
tested a portable control architecture for accelerator
beamline tuning. To date our software has been tested
against software models of accelerators and against actual
beamlines at Brookhaven and Argonne National
Laboratories. In this paper we briefly describe our object-
based, hierarchically organized portable architecture. The
main focus of this paper, however, is to describe our
extensions to [1] teleo-reactive (TR) planner to make it
suitable to handle the complex plan execution tasks of
accelerator beamline control. Extensions to Nilsson’s
original system include the addition of actions for targeted
data gathering. We extend the rules of the TR planner
with the addition of new types of rules that adjust
intermediate goals and that adapt to context changes by
loading and unloading rule sets. We give some examples
of our own extended teleo-reactive control frarmework.
We conclude by briefly discussing tests of our system in
beamline tuning as well as in diagnosing beamline
misalignments.

KEYWORDS

Intelligent control, teleo-reactive control, distributed
architectures.

OVERVIEW

Over the past five years we have designed and constructed
a portable, intelligent software system for accelerator
beamline control. Our design has been general in its
approach in that our software is configurable to a wide
variety of particle beam accelerator facilities and
extensible to other related problems. Our control
architecture has a multi-layer, hierarchical organization in
which knowledge-based decision making is used o
dynamically reconfigure lower level optimization and

GEOQRGE F. LUGER
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131, U.5.A

DANPLESS
Department of Computer Science
University of New Mexico
Albuguerque, NM 87131, U.S.A

control algorithms. An object-based physical access layer
in conjunction with a high speed data bus supports an
abstraction layer that hides the lower level details of
hardware measurement and manipulation, signal
processing, and system synchronization. High level
control is carried out by knowledge-based executives that
implement a modified version of the teleo-reactive
algorithm described in [1] and [2].

In this paper we first discuss the teleo-reactive control
system proposed by Nilsson and Benson. Next, we present
the accelerator tuning problem including its real-time
requirements, its data access constraints, and the problem
of organizing interacting subgoals. Then, we present our
extensions to the original teleo-reactive systemn designed
to address these control needs.

Our control system has been tested against models of
particle beam accelerators, as well as on actual
accelerators: the ATF facility at Brookhaven and the
ATLAS line at Argonne National Laboratory [3], [4].

A DESCRIPTION OF THE CONTROL
ARCHITECTURE

We have developed a comprehensive architecture
supporting distributed knowledge-based problem solving
and control. This architecture is intended to provide a
general framework for achieving distributed control of
complex systems. The architecture has been described in
numerons papers including {1}, [5], and [4] and is
described briefly here.

A defining feature of the architecture is the combination
of a "top-down" approach typical of hierarchical control
architectures such as 3-T [6] with an agent-based or
"bottom-up” approach. The result is 2 system that can
accomplish complex problem solving throngh the

coordination of simple, task-specific agents. The
justification for this approach is that sirmple agents have
the advantage of working in smaller and more constrained
problem spaces. The higher level controlier, on the other
hand, can make more global decisions about the entire
system, for example how the current results of a focusing
magnet can effect the problem of beam steering further
down the beamline. (See Figure 3 for an example of an
implemented control hierarchy.)

A primary strength of this framework is the ability to
integrate a wide variety of representations, both analytic
and knowledge-based, into a single control framework. At
the core of the architecture is a group of knowledge-based
controllers which apply control from a local scope. These
controllers are hierarchically organized in a
structural/functional hybrid design. Controllers are
responsible for making decisions about how controi
actions will be performed, what those actions will be,
when they will occur, and how their performance will be
measured. Controllers are also responsible for reasoning
about system state, diagnosing errors in control solutions,
decomposing goals into tasks and actions, and initiating
any necessary human interaction. Controliers typically
control the operations of lower level software
components, called solvers, that implement general
purpose control algorithms including conventional closed
loop, neural, or fuzzy control.

Because we use a symbolic system for reasoning about
system control, raw data produced by diagnostic elements
is rarely appropriate for direct manipulation by
controllers. The same is true in reverse; a uniform (low-
level} abstraction for manipulation of control elements is
usually inappropriate. For this reason we have developed
an object-oriented Physical Access Layer (PAL) for
providing an abstraction mechanism between controllers
and the underlying control system. The PAL is composed
of a number of Physical Layer Objects (PLOs) which are
abstract representations of 2 control element or collection
of control elements. These objects can be as simple as
single steering magnets, or as complex as non-linear
tuning knobs which manipulate a series of magnets. PLOs
communicate directly with a high speed software data bus.
We use Vsystem, an off the shelf cornmercial control bus,
as the software connection between the PAL and control
hardware.

TELEO-REACTIVE CONTROL

The intelligent controllers comprising the core of our
architecture are based a new adaptation of a robot control
technology called teleo-reactive control [1]. Teleo-

reactive control combines aspects of feedback-based
control and discrete action planning. TR programs
sequence the execution of actions that have been
assembled into a goal oriented plan.

Unlike more traditional Al planning environments, no
assumptions are made that actions are discrete and
uninterruptible and that every actions effects are
completely predictable. To the contrary, teleo-actions are
typically sustained over an indeterminate (but sinctly
controlled) period of time until their goal condition is
achieved. Typically, teleo-actions are executed as long as
the action’s preconditions are met, the associated goal has
not yet been achieved, and incoming data shows that
acceptable progress is being made. On the other hand, a
short sense-react cycle ensures that when some critical
condition in the environment changes, the control actions
also change to match the new state.

TR action sequences are represented by a data structure
called a TR tree. A TR tree is described by a set of
condition-action pairs (or production rules):

C0—» AQ
Cl = Al
C2—- A2

Cn— An

where the Ci are conditions and the Ai are the associated
actions. We refer to CO as the top level goal of the tree
and A0 as the null action, indicating that nothing further
needs be done once the top level goal is achieved. At each
execution cycle of the teleo-reactive system, each Ci is
evaluated from the top of the rules to the bottom (CO, CI,
C2, ... Cn) until the first true condition is found. The
action associated with this true condition is then
performed. The evaluation cycle is then repeated at a rate
that reflects the desired degree of reactivity.

The Ci —» Ai productions are organized in such a way that
each action Ai, if continuously executed under normal
conditions will eventually make some condition higher in
the rule tree true. A tree reflecting this rule ordering may
be seen in Figure 1. TR tree execution may be seen as
adaptive in that if some unanticipated event in the control
environment reverses the effects of previous actions, TR
execution will fall back to the lower level rule condition
that reflects that situation. From that point it will restart its
work toward satisfying the higher level goal. Similarly if
something "good" inadvertently happens, TR execution is
also opportunistic in that control can then automatically
shift to the action associated with that true condition.

al/
v

.

.
©

H\s
©

Figure 1. A simple TR tree

TR trees can be constructed with a planning algorithm that
employs common Al goal reduction methods. Starting
with the top level goal, the planner searches over actions
whose effect includes achievement of that goal. The
preconditions of those actions generate a new set of
subgoals, and this procedure recurses. Termination is
achieved when the preconditions of the (leaf) nodes of the
tree are satisfied by the present state of the environment.
Thus the planning algorithm regresses from the top level
goal through goal reduction to the current state. Actions,
of course, often have side effects and the planner must be
careful to verify that an action at any level does not alter
conditions that are required as preconditions of actions at
a higher level. Goal reduction is thus coupled with
constraint satisfaction, where a variety of action
reordering strategies are used to eliminate possible
constraint violations.

TR planning algorithms are used to build plans whose leaf
nodes are satisfied by the current state of the environment.
They usually do not build complete plans, that is, plans
that can start from any world state, because such plans
would generally be too large to store and execute
efficiently. This final point is important because
sometimes an unexpected environmental event can shift
the world to a state in which no action preconditions in the
TR tree are satisfied and some form of re-planning is
necessary. This invokes reactivation of the TR planner.

We have found that the teleo-reactive planning
mechanism provides a useful framework for representing
and implementing accelerator tuning algorithms for
several reasons:

Accelerator beams and their associated diagnostics
are typically dynamic and noisy.

The achievement of accelerator tuning goals is often
affected by stochastic processes such as RF
breakdown or oscillations in the beam source.

Actions required for tuning are often of indefinite
duration. This is generally true of tweaking and
optimization operations that need to be continued
until specific criteria are met.

¢ TR trees have been found to offer an intuitive

framework for encoding tuning plans acquired from
accelerator physicists.

We have identified several important issues that arise in
applying the teleo-reactive framework to industrial eontrol
systems. First, the assumption that parameter values
referenced in the preconditions of TR rules are always
accessible does not hold in many environments. In
accelerator control systems, for example, it is often
necessary to insert monitors at specific locations to read
beam size and position. Monitor insertion, however, can
be destructive, interfering with beam parameter readings
further down the beamline. Thus, the acquisition of certain
types of data requires actions and sequencing decisions
that need to be woven into the overall plan. To handle
this, we have added data acquisition actions and action
sequencing decisions into the teleo-reactive control
framework.

In addition, we have identified the need for adaptivity in
determining parameter values for intermediate subgoals.
These target values sometimes need to be adjusted after a
sequence of actions is performed and its effects evaluated.
Thus, we have introduced meta-rules with the effect of
adjusting intermediate target values.

In the following sections we describe in more detail the
extensions to telec-reactive control that were added to
make the TR framework an effective instrument for
accelerator control.

PROBLEMS IN ACCELERATOR TUNING

A particle accelerator beamline is a device that is used to
transport highly energetic charged particles from a source
(the accelerator) to a target. The beamline consists

of a number of clements designed to either change beam
characteristics (direction, size, shape, etc.) or to monitor
those characteristics in some way. The purpose of the
beamline is to steer, focus, and otherwise modify the beam
such that it is transported through the beam pipe to

a specified location while maintaining its characteristics
within an acceptable range. The final beam should reach
the target with a very specific set of characteristics, as
determined by the experiment or work being done. Figure
2 shows a simple accelerator beamline which includes
trim magnets for steering, quadrupole magnets for
focusing, Faraday cups and stripline detectors for
measuring current, and profile and popup monitors for
measuring size and position.

Accelerator beamlines are designed by placing various
components along the beam pipe to produce specific
effects in a known way. A good design will minimize the
number of components necessary to maintain acceptable
beam conditions while still allowing enough freedom of
control to achieve a range of target conditions.
Unfortunately, real systems rarely work exactly as they are
designed. Problems arise from imperfect beam
production, remnant magnetic fields, poorly modeled
beam behavior, misplaced or flawed control elements, and
changes to the design or use of the facility after it has been
built. Beamline designers consider these problems as well,
and build diagnostic components into the beamlines.
Profile monitors and current detectors are used to measure
beam parameters throughout the line to provide
information for verifying or correcting beam
characteristics. Even so, unperfect detectors, unkmown
system errors, and noise can cause beamline control to be
difficult at best.

Although most modern accelerator facilities have some
capability for automatic beamline tuning, normal day-to-
day operation still requires considerable human
intervention. Human operators are particularly necessary
for generating an initial tune of the beam at a target. In
fact, less experienced operators may find an initial tune,
and then pass control to an expert (often a physicist) for
fine tuning. The manual process of generating a proper
tune can be lengthy, often taking many hours and in some
cases many days.

Generally, tuning a beamline is a sequential process.
Human operators start using a predetermined set of known
or calculated settings intended to generate a measurable
beam at a downstream location. Once this baseline tune
has been found, an operator will adjust various magnet
settings between the source and the measurement location

W Stripline retec:ors

Quadrupole Magnets Profile Monitor

to produce another set of predetermined conditions that
usually allow the beam to be transported to another
location further downstream. When the beam can be
measured at the next location, it is again tuned to a set of
predetermined conditions. If the conditions canmot be
achieved, the operator will back up and attempt to re-tune
a prior section in an attempt to produce acceptable pre-
conditions for achieving the downstream tune. The
operator will then iterate between the upstream and
downstream sections until the desired downstream
conditions are achieved. The process continues in the
same fashion: achieving intermediate conditions at a target
location, tuning to a downstream location, and
backtracking to achieve better pre-conditions for
downstream tunes. The process is complete when the
operator achieves a proper set of beam characteristics at a
final target location.

Conventional approaches to the sequential tuning problem
have failed for a number of reasons. The first stems from
the iterative nature of the problem. Although tuning may
at first appear to be solvable by following a predetermined
script, such an inflexible solution cannot deal with
changes in upstream goal conditions arising from
downstream tuning. This is especially true when the path
from a current set of target conditions to a new set is non-
linear. The problem is also difficult because iterative
problem solving is often necessary within major sections,
where intermediate goals may need to be set by the
problem solving system itself.

For example, a simple beamline tuning problem involves
producing a symmetric beam at the center of a
downstream monitor. This problem involves two sub-
problems: 1) focusing the beam in both the x and y axis to
produce a smail, circular shape, and 2) steering the beam
through the beam pipe so that it arrives not only on center,
but also aimed along the longitudinal axis of the beam
pipe. This problem is made difficult because of
interactions between steering and focusing elements. If a
beam is not properly steered through a focusing element,
changes to the focusing element will re-steer the beam.
Operators normally alternate between steering and
focusing, first moving the beam to center, then focusing
slightly, and then moving the beam back to center.

It is also important to note that such problems have an

L L 1 ——
7
LF TN] [[D
Beam Source Linear Accelerator Faraday Cup

Fignre 2. A simple accelerator beamline.

significant knowledge-based aspect. The steering and foc-
using problem is simplified knowing that a proper on-
center, on-axis steer will minimize the steering effect of
the focusing elements. This information is especially
useful when attempting to produce an off-axis position at
a target. A smart system may steer on-axis while focusing,
and then adjust the final position only after focusing is
complete. Although this example is greatly simplified, it
illustrates the use of system-defined goal states and the
need for a knowledge-based approach.

A second reason that conventional scripting solutions fail
is the nmeed for dynamic identification of intermediate
targets and goal conditions. For example, a common
tuning goal is achieving a small round beam spot at the
end of the beamline. During the early stages of the tuning
process, there may be no measurable spot at the end of the
beamline. An obvious solution is to pick short range
intermediate targets and tune to those, one after another
until the beam is tuned to the end. Even if a beam spot
does appear at a downstweam monitor, width
measurements may be inaccurate because of various
upstream effects, yielding an incorrect tuning model. It is
often necessary to iterate tuning the entire beamline to
gain a proper model and a correct tune.

It is important to note that in beamline tuning, the use of
predefined intermediate goals is inadequate for achieving
a final solution. It is usually impossible to know whether
an intermediate tune is “good enough” without testing
beamline tunability downstrearn. The tuning process itself
thus provides valuable data for building a model of
beamline behavior that can be used in subsequent tuning.

Conventional scripting fails primarily because it lacks the
flexibility to determine subgoals interactively based on
conditions in the current environment. The teleo-reactive
approach provides the required flexibility in plan
execution. The TR approach allows 1) intermediate goals.
2) automatic backtracking. 3) goal jumping when we get
good enough results, and 4) robust behavior when the
environment is poorly modeled and results of actions are
uncertain. By using a hierarchical approach to TR
planning, we also get 5) intermediate goal refinement for
macro-level backtracking. '

EXTENSIONS TO THE TR FRAMEWORK

Controllers are the primary knowledge-based components
of our control architecture. We chose the TR representa-
tion for encoding control and domain specific information
in controllers. In order to make TR work in our control
system, however, we made the following changes:

The original TR representation of Nilsson/Benson used
simple condition action pairs to encode rules. While we
found this representation to be appropriate for limited
scope agents, we needed to expand the capabilities of

actions to support a distributed hierarchy. We extended
the original formulation by allowing actions that invoke
subroutine-like behavior. This is implemented in the
following ways: 1) an action may delegate control to
another controller with its own TR rule set, 2) an action
may trigger swapping the current TR tree with another
tree within the same controller, or 3) an action may cause
sets of TR rules to be loaded or unloaded. This type of
behavior is especially useful in circumstances where the
integration of a complete set of TR rules in a single
system would cause unnecessary complexity and possibly
unpredictable behavior.

A closely related modification to the TR architecture is
the extension of the “action’ of TR rules to include the
invocation of problem solving algorithms as opposed to
simple actions. This more complex problem solving
occurs through independent control structures (i.e., solvers
in our architecture). For instance, rather than simply
modifying a control point in responmse to a monitored
condition, the TR tree may also initiate a standalone
control algorithm. This “delegation” of control is done in
a manner similar to the “subroutining” described above. In
either case, special monitoring conditions are set so that
the TR tree regains control whenever a higher level rule
becomes active, or when the control algorithm finishes
execution.

One of the difficulties in applying TR rules to real data is
determining a set of rule preconditions which will work in
2 dynamic system. A third modification we made to the
original TR architecture is the use of variable ranges
rather than single point goals. In fact, because we used
PROLOG to encoede our rule sets, any PROLOG clause
could be used as a valid goal precondition. For beamline
tuning, we used this flexibility to specify ranges of valid
moniter readings 10 indicate general beam characteristics
(e.g.. a width from 10 to 16 mm is a good “small” beam.)

As stated previously, one of the restrictions of more
traditional approaches is an inflexibility in setting
intermediate goals, working on downstream sections, and
then backtracking using a new set of goals. A fourth
modification we made is the use of meta-rules which
modify target values. These meta-rules can be used to
change the behavior of a TR tree without modifying the
structure or ordering of the rule set itself. For instance, the
first pass of a tuning algorithm may generate a very rough,
on-axis tune at a downstrearmn momnitor. After further
downstream tuning, a new set of target conditions, along
with narrower tolerances, can be used to retune the initial
section. Meta-rules are also usefu} for producing iterative
behavior within a tree. For example, we used meta-rules to
modify both precondition and target settings for pairs of
competing rules. The meta-rules caused the competing
rules to alternate firing until a higher level precondition
was satisfied. This alternating behavior is especially

useful in situations where “we don’t know how close we
can get until we try.”

A final modification to the original TR architecture is the
addition of explicit observation actions. In using TR trees
to control accelerators, we realized that the observations
necessary to form an accurate picture of the control
environment, and therefore necessary to evaluate TR
conditions, are not always automatic or cost free. For
example, in order to determine beam loss at a particular
location in the beamline, a Faraday cup may need be
inserted to measure beam charge. This action is called a
“destructive” action, in that all beam is lost beyond the
insertion point. Furthermore, the use of many such
monitoring devices can cost time, since these devices must
be mechanically inserted or retracted.

A more difficult problem arises when certain conditions
(rule preconditions) cannot be detected except through the
use of a complex control sequence. For instance,
determining whether a beam is exhibiting a “waist”
condition requires modifying focusing elements and
observing the beam at two or more profile monitors. In
such cases, the entire set of TR preconditions cannot be
reevaluated during every TR cycle. Instead, additional TR
rules are used to indicate when and if observation actions
ate used to reacquire costly information.

AN EXAMPLE FROM ATLAS

As part of our research, we constructed software control
systems for tuning several particle accelerator beamlines.
A primary goal was to automatically tune the PIT beamline
of the ATLAS facility at Argonne National Laboratory.
ATLAS is a facility for experimenting with heavy
isotopes. lons are generated on a high voltage platform
and accelerated by the P accelerator. The PII beamline
connects the high voltage platform to the accelerator. The
purpose of the line is to transport the beam through a 180°
achromatic bend, chop and bunch the beam into packets,
and then prepare the beam for entrance into the
accelerator. The standard tuning procedure used by human
operators breaks control into four sequential parts: tuning
the PIIO line, tuning the PI1 achromat, tuning the PII2

beamline, and then refining the entire rune to produce
proper beam conditions at the exit of the accelerator.

Our control system, constructed first for the ATF
beamline at Brookhaven National Laboratory and then
ported to ATLAS, is a distributed, hierarchical control
system capable of executing stored teleo-reactive
procedures. Distributed control is implemented through a
set of knowledge-based controllers, each of which is an
“expert” in controlling a section of the beamline. The
controllers may perform reasoning, execute actions for
directly controlling the beamiine, monitor the state of the
system, or delegate actions to lower-level controllers or to
solvers. Solvers are reusable components that implement
general purpose optimization or control algorithms, such
as hill-climbing optimization, fuzzy logic or neural
network-based feedback control, conventional control
loops, etc. All control actions are sent to the Physical
Access Layer (PAL) which is responsible for converting
higher-level commands into implementation specific
control signals. Figure 3 illustrates the basic layout of the
control hierarchy for ATLAS.

The following code fragments are parts of the original TR
trees used to control the PIT beamline at ATLAS. They are
included to illustrate the various modifications we made to
the TR architecture.

Pll - TRANSVERSE

rule(7,
This rule is for tuning pii1’,
[tuned(pii0}, not(tuned(piit)), not(inserted("FCPO017)],
delegate(pii1, pii1, [model, nul, tune_piit]),
[transmission{FCP201")],
[set(tuned{pii1)}],
50).

rule(s,
"Retract the FCP001 before tuning pii1’,
[tuned(pii0), not(tuned(pii))],
pal_set([TFCPCOT, position, out, 0]]),

0.
[unset(inserted(FCPOO1")],
50}

Rule 7 is a simple example of a TR rule which delegates
responsibility of tuning the PII1 beamline to another TR

PII Tuning Controller

Transverse Optics Controller

A=l

Longitudinal Optics Controller

PII0 Controller

PII1 Controller

PIIZ Controller

¥

v

Lew level control system

Figure 3. Control hierarchy for ATLAS

controller. The rule states that “if pii0 is tuned and piil is
not tuned and the FCPO01 Faraday cup is retracted” then
“delegate control to the piil controller” with the goal
“tune_piil”. Delegation is often as simple as this rule, but
can also include more complex messaging and additional
information. The keyword “model” is used to pass a
reference to a globally available model, although in rule 7
the model is null.

Rule 8, ordered lower in the TR rule list, is used to retract
the FCPOO1 Faraday cup in preparation for firing rule 7
{guaranteeing one of the higher level preconditions.) Pairs
of rules like 7 and 8 are common in our TR control
algorithms for performing simple control steps in
preparation for more complex ones.

rule(3,
‘This rule handles an ask for tuning pii®”,
[agoal(tune_pii0)],
delegate(pii0, piiQ, [model, pii1_preccnditions, tune_pii0]),

{r:aply(tune _pii0, ready, yes)],
50).

A more complex version of PII — Transverse includes
rules like rule 3 above. Our control system is both
knowledge-based and distributed. Information regarding
most preconditions for tuning PII1 are stored in the PII1
controller, not in the higher level PII Transverse
controller. Rule 3 allows the PTI1 controller to ask its
hierarchical parent, PII Transverse, to tune PII0. When the
ask precondition [agoal(tune_pii0)] occwrs in PI
Transverse, rule 3 can fire and initiate tuning in the PIIQ
controller. In this case, model information containing PII1
preconditions can be transferred to the PII0 controller as a
new set of goals.

Pi-0O
rule(7,

[well_focused, well_steered),
ask(parent, help, tune_pii1),
[answer],

[test(yes, tuned('PI11%)],

100)

rule(s,
"Steer after well focused',
[well_focused),
delegate("1d_hill', nui, fctrl_objs,
[STROO1', 'STP0O1', 'STPO0Z', 'STPO02Y, ctrl_params,
[current_x, current_y, current_x, current_yi,
snapshot_mode, off,
diag_objs, [FCP0OO1Y,
diag_params, [current], weights, [10000], exponents, [10000],
opt_mode,maximize, step_size, 5000]),
[transmission('FCPO01Y),
[set(well_steered)],
100).

rule(s,
{t'olerance_or__more({transmission(' FCP001Y,

goal(transmission{'FCP001"),
tolerance(transmission('FCPO019)),

focused_for_transmission],
delegate('2d_focus', nul, [ctr_objs, ['QDPOOT’, '‘QDPOOTY,
ctri_params,
[current_x, current_yj, diag_ohj, 'PMPOOT', tx,
goal(sigma_x{'PMPQ014),
ty, goal(sigma_y('PMPO01")), step_sizes, {10009, 10000113,
[sigma_x('PMP0Q1Y), sigma_y('PMPCO1")],
[set(well_focused)],
100).

rule{10,

[tolerance_or_mere(ftransmission('FCPO01Y,
goal({transmission('FCP001%),

tolerance(transmission(FCPCO1Y)]),

inserted('FCP001Y)],

delegate("1d_hill, nul, fetri_objs, 'QDP0OT", 'QDPOO?T],
ctrl_params,

[current_x, current_y], snapshot_mode, off, diag_objs,
['FCPOO11,

diag._params, [current], weights, [10000], exponents, [10000],
opt_mode,

maximize, step_size, 10000Q)),

[transmission('FCPGO1,

[set{focused_for_transmission)],

100).

rule(11,

[fired(rule14),significantly, _greater_than([transrission('FCP001Y,
default{'FCPO01", current, actual)]),

inserted(FCPOO1Y),

delegate(1d_hill', nul, [ctri_objs, [STP001, 'STP0OO1],
ctr_params,

feurrent_x, current_y], snapshot_mode, off, diag_cbjs,
[FCPOO1T,

diag_params, [current], weights, [10000], exponents, [10000],
opt_rnode,

maxmize, step_size, 10000}),

[transmission("(FCPO01'],

0,
100).

Ruies 7 - 11 above come from the TR tree used for tuning
the PIIQ beamline. Rule 7 illustrates how a child controller
can ask its hierarchical parent to perform a service in
preparation for its own continued tuning. In this case, the
PIIO controller will need to use a Faraday cup at the exit
of the PIT1 beamline as 2 diagnostic element for final PIIQ
tuning. The PIIQ controller will block and wait for a
response from the PII Transverse (parent) controller
before continuing with tuning.

Rule 8 illustrates how the TR tree can perform a complex
action by passing control to a solver. If the TR tree has

.determined that the PII0 line is “well focused”, it will use

simple hill-climbing to optimize steering to maximize
beam transmission.

Rules 9 and 10 show how ranges may be used rather than
strict preconditions. In these rules, “goal()” and
“tolerance()” are PROLOG functions which are bound at
the time the rule is evaluated. Meta-rules may modify the
values associated with these functions in order to change
the desired target or accuracy necessary for the rule to
fire. Rule 11 also shows how a function,

“significantly_greater_than()” may be used like a fuzzy
variable to determine whether the precondition is satisfied.
Again, the actual behavior of the function may change at
runtime in response to other TR rules.

Rules 10 and 11 also show how iteration may occur in the
TR wee. Rule 11 activates steering to achieve maximum
transmission arnd, in this case, to also reduce steering
effects during focusing. Once steering has been optimized,
rule 10 can fire, focusing in order to minimize beam size
at a downstream monitor. If steering is badly affected
during focusing, the transmission preconditions will cease
to be satisfied, and the steering rule will fire again. These
two rules will alternate until a proper combination of
steering and focusing is achieved.

RESULTS

We have used our TR-based control system successfully
at both the Brookhaven and Argonne accelerators. At the
Brookhaven ATF, we were able to assist in diagnosing
misalignments in quadrupole magnets. The normal
method for doing this is shutting down the accelerator and
then manually measuring the placement of each magnet.
The lead physicist at the ATF, Xijie Wang, suggested an
algorithm which could be automated for diagnosing the
misalignment through a series of tuning and testing steps.
Our system first tuned the beamline, and then manipulated
focusing and steering elements to comrectly identify a
misaligned quadrupole.

We also achieved significant success tuning Argonne’s
ATLAS. Using the architecture described previously, we
successfully tuned the beam from the high voltage
platform, through PIIO, around the PI1 achromat, and
through PII2, achieving a proper beam spot at the exit to
the PII Linac. The TR representation worked well,
achieving tunes equal to or better than benchmark tunes
set by ATLAS operators. We found TR sequencing to be
particularly robust, continuing to function even during
periods of instability in the beam source. The controller
would adapt to such circumstances by reverting to rules at
the bottom of the rule set. Once steering and focusing
corrections were made, the controller would Jump back to
higher level tuning rules and continue.

CURRENT STATUS

Developing of TR rule sets for ATLAS and the ATF was
a lengthy process requiring significant testing, tweaking,
and reworking. We have developed an automatic planning
mechanism for generating TR trees at run-time based on
imntermediate goals generated during mming. This
automatic planner has not yet been integrated with our
control system or tested on an actnal beamline. The
planner will require a significant knowledge-based
component containing considerable heuristic and
experiential information relevant to the facility being

conirolled. In addition, the entire system will have access
to a model of the beamline that will be used to predict
effects of proposed actions, diagnose problems, and to
perform model-based control.

Future efforts will also be directed toward utilizing the
distributed nature of the architecture to perform
simultanecus control of multiple beamline sections.
Higher level controllers will act as real-time SUpervisors
and mediators for lower-level controllers operating over
individual beamline sections. The use of various agent
communication techniques will be crucial to prevent
controllers from working against each other or, even
worse, putting the beamline in unstable or unsafe states,

ACKNOWLEDGMENTS

This work was supported by a DOE SBIR contract (#DE-
FGO05-95ER81897) to Vista Control Systems, Inc. We
greatly appreciate the efforts of Richard Pardo for helping
us design our algorithms, and Floyd Munsen for helping
us connect our architecture to the ATLAS control system.

REFERENCES

(1] Nilsson, N.J., Teleo-Reactive Programs for Agent
Control. Journal of Artificial Intellipence Research, 1,
1994,:139-158.

[2] Benson, S., Inductive Learning of Reactive Action
Models. Machine Learning: Proceedings of the Twelfth
International Conference (San Francisco: Morgan
Kaufmann, 1995).

(3] Klein, W., A Software Architecture for Intelligent
Control (Doctoral Dissertation, Department of Computer
Science. University of New Mexico, Albuquerque, NM.,
1997).

[4] Stern, C., Qlsson, E., Kroupa, M., Westervelt, R.,
Luger, G., Klein, W. A Controil System for Accelerator
Tuning Combining Adaptive Plan Execntion with Online
Leaming, Proceedings of ICALEPCS’97, 1997.

[5] Klein, W.,; Stern, C., Luger, G., Olsson, F.. An
Intelligent Control Architecture for Accelerator Beamline
Tuning, Proceedings of AAAI 97, 1997,

(6] Ansaklis, P.J., Passino, KM., and Wang, S.J.,
Towards Intelligent Control Systems: Architectures and
Fundamental Issues. Journal of Intelligent and Robotic
Systems, 1, 1989, 315-342.

